Coriell Institute for Medical Research
Coriell Institute of Medical Research
  • Request a Quote
  • Donate
  • Login
  • View Cart
Sample Catalog | Custom Services | Core Facilities | Genomic Data Search
  • Biobank
    • NIGMS
    • NINDS
    • NIA
    • NHGRI
    • NEI
    • Allen Cell Collection
    • Rett Syndrome iPSC Collection
    • Autism Research Resource
    • HD Community Biorepository
    • CDC Cell and DNA
    • J. Craig Venter Institute
    • Orphan Disease Center Collection
    • All Biobanks
  • Research
    • Overview
    • Meet Our Scientists
      • Our Faculty
      • Our Scientific Staff
    • Camden Cancer Research Center
    • Epigenetic Therapies SPORE
    • Core Facilities
    • Epigenomics
    • Camden Opioid Research Initiative (CORI)
    • The Issa & Jelinek Lab
    • The Jian Huang Lab
    • The Luke Chen Lab
      • The Lab
      • The Team
      • Publications
    • The Scheinfeldt Lab
    • The Shumei Song Lab
    • The Nora Engel Lab
      • The Lab
      • The Team
      • Publications
    • Publications
  • Services
    • Overview
    • Biobanking Services
      • Core Services
      • Project Management
      • Research Support Services
      • Sample Cataloging
      • Sample Collection Kits
      • Sample Data Management
      • Sample Distribution
      • Sample Management
      • Sample Procurement
      • Sample Storage
    • Bioinformatics and Biostatistics Services
    • Cellular and Molecular Services
      • Biomarker Research Solutions
      • Cell Culture
      • Nucleic Acid Isolation and Quality Control
    • Clinical Trial Support
      • Overview
      • Sample Collection
      • Data Management
      • Sample Processing and QC
      • Storage and Distribution
      • Biomarker Services
      • Data Analaysis
    • Core Facilties
      • Overview
      • Animal and Xenograft
      • Bioinformatics and Biostatistics
      • Cell Imaging
      • CRISPR Gene Engineering
      • Flow Cytometry and Cell Sorting
      • Genomics and Epigenomics
      • iPSC - Induced Pluripotent Stem Cells
      • Organoids
    • Coriell Marketplace
    • Genomic, Epigenomic and Multiomics Services
    • Stem Cells and iPSC Services
      • Core Services
      • Reprogramming
      • Characterization and Quality Control
      • Differentiated Cell Lines
      • iPSC-Derived Organoids
      • iPSC Expansion
      • iPSC Gene Editing
  • Ordering
    • Stem Cells
    • Cell Lines
    • DNA and RNA
    • Featured Products
      • FFPE
      • HMW DNA
    • Genomic Data Search
    • Search by Catalog ID
    • Help
      • Create Account
      • Order Online
      • Ordering FAQ
      • FAQs/Culture Instructions
      • Reference Materials
        • Biobanks
        • NIGMS Repository
        • NHGRI Repository
        • NINDS Repository
        • NIA Repository
        • NIST
        • GeT-RM
      • Secondary Distribution Policies
      • MTA Assurance Form
      • Shipment Policy
      • Contact Customer Service
  • About Us
    • Our History
    • Meet Our Team
    • Meet Our Board
    • Education
      • Science Fair
      • Summer Experience
      • Outreach
      • Research Program Internship
    • Press Room
      • Press Releases
      • Coriell Blog
      • Annual Report
    • Careers
      • Working at Coriell
    • Giving
      • Donate
      • Giving FAQ
    • Contact Us
    • Legal Notice
  • Login View Cart
search submit
NA11629 DNA from LCL

Description:

MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB; MEN2B
RET PROTOONCOGENE; RET

Affected:

Yes

Sex:

Female

Age:

25 YR (At Sampling)

  • Overview
  • Characterizations
  • Phenotypic Data
  • Publications
  • External Links

Overview

back to top
Repository NIGMS Human Genetic Cell Repository
Subcollection Heritable Diseases
Hereditary Cancers
Class Heritable Cancer Syndromes and other Cancers
Quantity 25 µg
Quantitation Method Please see our FAQ
Biopsy Source Peripheral vein
Cell Type B-Lymphocyte
Tissue Type Blood
Transformant Epstein-Barr Virus
Sample Source DNA from LCL
Race White
Relation to Proband proband
Confirmation Clinical summary/Case history
Species Homo sapiens
Common Name Human
Remarks Clinically affected; oral mucosal neuromas; medullary thyroid carcinoma; bilateral pheochromocytoma; marphanoid body habitus; negative family history; donor subject has a T>C transition (ATG>ACG) in exon 16 of the RET gene resulting in the substitution of threonine for methionine at codon 918 [Met918Thr (M918T)]

Characterizations

back to top
IDENTIFICATION OF SPECIES OF ORIGIN Species of Origin Confirmed by Nucleoside Phosphorylase, Glucose-6-Phosphate Dehydrogenase, and Lactate Dehydrogenase Isoenzyme Electrophoresis
 
Gene RET
Chromosomal Location 10q11.2
Allelic Variant 1 164761.0013; MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB
Identified Mutation MET918THR; In all 9 unrelated MEN2B patients studied, Hofstra et al. (1994) found a mutation in codon 918 of the RET gene, causing the substitution of a threonine for a methionine in the tyrosine kinase domain of the protein. They found the same mutation in 6 out of 18 sporadic medullary thyroid carcinomas. This conclusively demonstrates that MEN2A and MEN2B are related as allelic disorders; there is thus no justification for calling MEN2B MEN3. This identical point mutation in the catalytic core of the tyrosine kinase domain of RET was also found in association with both inherited and de novo MEN2B by Carlson et al. (1994) and Eng et al. (1994). The ATG-to-ACG mutation results in the substitution of threonine for methionine at codon 918 in the codon designation of Takahashi et al. (1988, 1989). Carlson et al. (1994) proposed that this amino acid replacement affects substrate interactions and results in oncogenic action by the RET protein. It is noteworthy that most mutations identified in cases of MEN2A and familial medullary thyroid carcinoma have been contained within the extracellular ligand-binding domain of the RET protooncogene and have resulted in nonconservative substitutions for 4 different cysteines. MEN2B has shown mainly noncysteine substitutions. The existence of polymorphic markers tightly linked to MEN2B and the fact that the M918T mutation accounts for almost all cases of MEN2B enabled Carlson et al. (1994) to determine unequivocally whether mutations occurred on the maternal or paternal chromosome. Strikingly, all 25 of the mutations they analyzed occurred in the paternal allele. Therefore, MEN2B can be added to the list of neoplastic diseases, which already includes Wilms tumor, bilateral retinoblastoma, osteosarcoma, embryonal rhabdomyosarcoma, and neurofibromatosis type I, for which the relevant genetic alteration occurs either predominantly or exclusively on the paternally derived chromosome. Carlson et al. (1994) also observed a paternal age effect. Santoro et al. (1995) demonstrated that this RET allele is a transforming gene in NIH 3T3 cells as a consequence of constitutive activation of the RET kinase. The mutation alters RET catalytic properties both quantitatively and qualitatively. Eng et al. (1995) analyzed 71 sporadic medullary thyroid carcinomas (68 primary tumors and 3 cell lines) for mutations in RET exons 10, 11, and 16. They found that 23% of sporadic MTC had RET codon 918 mutations (located in exon 16), while only 3% had exon 10 mutations and none had mutations in exon 11. They found no exon 16 mutations in MTC from 14 MEN2A cases. Thus, exon 10 and 11 mutations, commonly found in familial MTC and MEN2A, rarely occur in sporadic MTC; somatic mutation of RET codon 918 appears to play a role in the tumorigenesis of a significant minority of sporadic MTC but not in MEN2A tumors. In addition to their biologic interest, these findings may have clinical application in determining whether a case presenting with isolated MTC is truly sporadic or is part of an inherited cancer syndrome. The codon 918 mutation was altered methionine (ATG) to threonine (ACG) in all instances in which germline DNA was available for analysis, it was found to be wildtype. This mutation was previously designated MET664THR. In MEN2A, mutations affecting cysteine residues in the extracellular domain of the receptor tyrosine kinase cause constitutive activation of the tyrosine kinase by the formation of disulfide-bonded homodimers. In MEN2B, only the met918-to-thr mutation in the tyrosine kinase domain has been identified. This mutation does not lead to dimer formation, but has been shown both biologically and biochemically to cause ligand-independent activation of the RET protein, but to a lesser extent than MEN2A mutations. Bongarzone et al. (1998) showed that the activity of the MEN2B RET mutation could be increased by stable dimerization of the receptor. Dimerization was achieved experimentally by constructing a double mutant receptor with a MEN2A mutation (cys634 to arg; 164761.0011) in addition to the MEN2B mutation, and by chronic exposure of the cells expressing the met918-to-thr mutation of RET to the RET ligand glial cell line-derived neurotrophic factor (GDNF; 600837). In both cases, full activation of the RET-MEN2B mutant protein, measured by in vitro transfection assays and biochemical parameters, was seen. These results indicated that the MEN2B phenotype could be influenced by the tissue distribution or concentration of RET ligand(s).

Phenotypic Data

back to top
Remarks Clinically affected; oral mucosal neuromas; medullary thyroid carcinoma; bilateral pheochromocytoma; marphanoid body habitus; negative family history; donor subject has a T>C transition (ATG>ACG) in exon 16 of the RET gene resulting in the substitution of threonine for methionine at codon 918 [Met918Thr (M918T)]

Publications

back to top
Margraf RL, Mao R, Wittwer CT, Rapid diagnosis of MEN2B using unlabeled probe melting analysis and the LightCycler 480 instrument The Journal of molecular diagnostics : JMD10:123-8 2008
PubMed ID: 18258924
 
Margraf RL, Mao R, Highsmith WE, Holtegaard LM, Wittwer CT, Mutation scanning of the RET protooncogene using high-resolution melting analysis Clinical chemistry52:138-41 2006
PubMed ID: 16391329

External Links

back to top
dbSNP dbSNP ID: 14155
Gene Cards RET
Gene Ontology GO:0004691 cAMP-dependent protein kinase activity
GO:0004713 protein-tyrosine kinase activity
GO:0004714 transmembrane receptor protein tyrosine kinase activity
GO:0004872 receptor activity
GO:0005509 calcium ion binding
GO:0005524 ATP binding
GO:0005952 cAMP-dependent protein kinase complex
GO:0006468 protein amino acid phosphorylation
GO:0007156 homophilic cell adhesion
GO:0007165 signal transduction
GO:0007166 cell surface receptor linked signal transduction
GO:0007497 posterior midgut development
GO:0008151 cell growth and/or maintenance
GO:0008603 cAMP-dependent protein kinase regulator activity
GO:0016020 membrane
GO:0016021 integral to membrane
GO:0016740 transferase activity
NCBI Gene Gene ID:5979
NCBI GTR 162300 MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB; MEN2B
164761 REARRANGED DURING TRANSFECTION PROTOONCOGENE; RET
OMIM 162300 MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB; MEN2B
164761 REARRANGED DURING TRANSFECTION PROTOONCOGENE; RET
Omim Description MUCOSAL NEUROMA SYNDROME
  MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB; MEN IIB; MEN2B
  MULTIPLE ENDOCRINE NEOPLASIA, TYPE III, FORMERLY; MEN3, FORMERLY
  NEUROMATA, MUCOSAL, WITH ENDOCRINE TUMORS
  WAGENMANN-FROBOESE SYNDROMEGANGLIONEUROMATOSIS OF THE ALIMENTARY TRACT, INCLUDED
Pricing
International/Commercial/For-profit:
$281.00USD
U.S. Academic/Non-profit/Government:
$139.00USD
Add to Cart
How to Order
  • Ordering Instructions
  • MTA / Assurance Form
  • Statement of Research Intent Form
Related Products
Same Subject
  • GM11629 - B-Lymphocyte
Miscellaneous
  • Custom Services

Our mission is to prevent and cure disease through biomedical research.

CONTACT US

CUSTOMER SERVICE
customerservice@coriell.org (800) 752-3805 • (856) 757-4848
Subscribe to our newsletter here

Coriell Institute for Medical Research
403 Haddon Avenue Camden, NJ 08103, USA (856) 966-7377

Ⓒ 2025 Coriell Institute. All rights reserved.

  • Facebook
  • Linkedin
  • Youtube